skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarnatskiy, A S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Measurements ofCPobservables and the CKM angleγare performed inB±→DK*(892)±decays, whereDrepresents a superposition ofD0and$$ {\overline{D}}^0 $$ D ¯ 0 states, using the LHCb dataset collected during Run 1 (2011–2012) and Run 2 (2015–2018). A study of this channel is presented with theDmeson reconstructed in two-body final statesK±π,K+Kandπ+π; four-body final statesK±ππ±πandπ+ππ+π; and three-body final states$$ {K}_{\textrm{S}}^0{\pi}^{+}{\pi}^{-} $$ K S 0 π + π and$$ {K}_{\textrm{S}}^0{K}^{+}{K}^{-} $$ K S 0 K + K . This analysis includes the first observation of the suppressedB±→[π±K]DKandB±→[π±Kπ±π]DKdecays. The combined result givesγ= (63±13)°. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Charged-particle trajectories are usually reconstructed with the LHCb detector using combined information from the tracking devices placed upstream and downstream of the 4 T m dipole magnet. Trajectories reconstructed using only information from the tracker downstream of the dipole magnet, which are referred to as T tracks, have not been used for physics analysis to date. The challenges of the reconstruction of long-lived particles with T tracks for physics use are discussed and solutions are proposed. The feasibility and the tracking performance are studied using samples of long-lived$${\Lambda }$$ Λ and$$K_S^0$$ K S 0 hadrons decaying between 6.0 and 7.6 m downstream of the proton–proton collision point, thereby traversing most of the magnetic field region and providing maximal sensitivity to magnetic and electric dipole moments. The reconstruction can be expanded upstream to about 2.5 m for use in direct searches of exotic long-lived particles. The data used in this analysis have been recorded between 2015 and 2018 and correspond to an integrated luminosity of 6 $$\hbox {fb}^{-1}$$ fb - 1 . The results obtained demonstrate the possibility to further extend the decay volume and the physics reach of the LHCb experiment. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract A search for the very rare$$B^{*0}\rightarrow \mu ^+\mu ^-$$ B 0 μ + μ - and$$B_{s}^{*0}\rightarrow \mu ^+\mu ^-$$ B s 0 μ + μ - decays is conducted by analysing the$$B_c^+\rightarrow \pi ^+\mu ^+\mu ^-$$ B c + π + μ + μ - process. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9$$\text {\,fb}^{-1}$$ \,fb - 1 . The signal signatures correspond to simultaneous peaks in the$$\mu ^+\mu ^-$$ μ + μ - and$$\pi ^+\mu ^+\mu ^-$$ π + μ + μ - invariant masses. No evidence for an excess of events over background is observed for either signal decay mode. Upper limits at the$$90\%$$ 90 % confidence level are set on the branching fractions relative to that for$$B_c^+\rightarrow J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+$$ B c + J / ψ π + decays,$$\begin{aligned} \mathcal{R}_{B^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 3.8\times 10^{-5}\ \text { and }\\ \mathcal{R}_{B_{s}^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 5.0\times 10^{-5}. \end{aligned}$$ R B 0 ( μ + μ - ) π + / J / ψ π + < 3.8 × 10 - 5 and R B s 0 ( μ + μ - ) π + / J / ψ π + < 5.0 × 10 - 5 .  
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. A<sc>bstract</sc> A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0→K*0(→K+π+μis performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb−1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$ C 9 , responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$ C 10 ,$$ {\mathcal{C}}_9^{\prime } $$ C 9 and$$ {\mathcal{C}}_{10}^{\prime } $$ C 10 are all in better agreement than$$ {\mathcal{C}}_9 $$ C 9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0+τ→ μ+μ] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$ C 9 τ
    more » « less